

Cardiff Business School

Ysgol Busnes Caerdydd

Forecasting in R Regression models

Bahman Rostami-Tabar

- 1 Learning objectives
- 2 Special event
- 3 Some useful predictors for linear models
- 4 Lab Session 9

- Create dummy variables
- Construct a regression model with dummy variables
- Forecast using regression models with dummy variables

How to forecast the impact of special events

- Among factors that may impact patient visits, special events such as public holidays, festive days, strikes, sport events, etc may play an important role:
 - 1 Use dummy variables
 - ² Use experience and expertise

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is called a **dummy variable**.

	Α	В
1	Yes	1
2	Yes	1
3	No	0
4	Yes	1
5	No	0
6	No	0
7	Yes	1
8	Yes	1
9	No	0
10	No	0
11	No	0
12	No	0
13	Yes	1
14	No	0

Dummy variables

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

		A	В	С	D	E
9	1	Monday	1	0	0	0
	2	Tuesday	0	1	0	0
	3	Wednesday	0	0	1	0
	4	Thursday	0	0	0	1
	5	Friday	0	0	0	0
f	6	Monday	1	0	0	0
	7	Tuesday	0	1	0	0
	8	Wednesday	0	0	1	0
	9	Thursday	0	0	0	1
	10	Friday	0	0	0	0
	11	Monday	1	0	0	0
	12	Tuesday	0	1	0	0
	13	Wednesday	0	0	1	0
	14	Thursday	0	0	0	1
	15	Friday	0	0	0	0

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies

Outliers

If there is an outlier, you can use a dummy variable to remove its effect.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies

Outliers

If there is an outlier, you can use a dummy variable to remove its effect.

Public holidays

For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

 Variable takes value 0 before the intervention and 1 afterwards.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

 Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

- Variables take values 0 before the intervention and values
 {1, 2, 3, ...} afterwards.
- this could be also handled using trend()

Include any special event using dummies

- Christmas Eve: if Christmas Eve, v_t = 1, v_t = 0 otherwise
- New year's Day: if New year's Day, v_t = 1, v_t = 0 otherwise.
- and more: Ramadan and Chinese new year, school holiday, etc

lag and lead variables

Lagged values of a predictor:

- Create new variables by shifting the existing variable backwards
- Lead values of a predictor:
 - Create new variables by shifting the existing variable forwards

Example: x is advertising which has a delayed effect

$$x_1$$
 = advertising for previous month;

 x_2 = advertising for two months previously;

For example, sometimes the effect of a partiucluar event might be different if it is on a weekend or a week day or its effect might be different in each shift:

- you need to introduce an interaction variable
- you can use a new dummy as : v1*v2

- 1 Learning objectives
- 2 Special event

3 Some useful predictors for linear models

4 Lab Session 9

Following lab session 8, we would like to develop a model that includes three more variable as dummies:

- Import the se.csv file from the project directory
- Join them to the data you created with temperature for Lab 8
- 3 Split the data into train and test
- 4 Train data using two regression models 4.1. using temperature and seasonality 4.2. using seasonality , temperature and Black Friday, Christmas Day and Halloween Day
- 5 Produce forecast

6

Calculate forecast accuracy