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Learning objectives

Describe linear associations between variables
Explain regression model assumptions
Construct a regression model
Forecast using regression models
Check residual diagnostics
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Regression models

To explain
To forecast

Simple linear regression model(SLR)
Multiple linear regression model (MLR)
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SLR model in thoery

Regression model allows for a linear relationship
between the forecast variable y and a single predictor
variable x.

yt = β0 + β1xt + εt.

yt is the variable we want to predict: the response
variable
Each xt is numerical and is called a predictor
β0 and β1 are regression coefficients
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SLR model in practice

In practice, of course, we have a collection of observations
but we do not know the values of the coefficients β̂0, β̂1.
These need to be estimated from the data.

yt = β̂0 + β̂1xt.

yt is the response variable
Each xt is a predictor
β̂0 is the estimated intercept
β̂1 is the estimated slope
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What is the best fit

There are many ways that a straight line can be
laid on the scatter
Best known criterion is called Ordinary Least
Squares(OLS)
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Estimation of the model

That is, we find the values of β0 and β1 which
minimize

N∑
i=1

e2i =
N∑
i=1

(yi − β0 − β1xi)2.

This is called least squares estimation because it
gives the least value of the sum of squared
errors.
Finding the best estimates of the coefficients is
often called fitting the model to the data.
We refer to the estimated coefficients using the
notation β̂0, β̂1. 10
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Example: US consumption expenditure

us_change %>%
gather("Measure", "Change", Consumption, Income) %>%
autoplot(Change) +
ylab("% change") + xlab("Year")
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Example: US consumption expenditure
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Example: US consumption expenditure

fit_cons <- us_change %>%
model(lm = TSLM(Consumption ~ Income))

report(fit_cons)

## Series: Consumption
## Model: TSLM
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4084 -0.3182 0.0256 0.2998 1.4516
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5451 0.0557 9.79 < 2e-16 ***
## Income 0.2806 0.0474 5.91 1.6e-08 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.603 on 185 degrees of freedom
## Multiple R-squared: 0.159, Adjusted R-squared: 0.154
## F-statistic: 35 on 1 and 185 DF, p-value: 1.6e-08

13



Multiple regression

In multiple regression there is one variable to be
forecast and several predictor variables.
The basic concept is that we forecast the time
series of interest y assuming that it has a linear
relationship with other time series x1, x2, . . . ., xK
We might forecast daily A&E attendnace y using
temperature x1 and GP visits x2 as predictors.

14



How many variable can we add?

You can add as many as you want but be aware of:

Overfitting
Multicollinearity
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Multiple regression and forecasting

yt = β0 + β1x1,t + β2x2,t + · · · + βkxk,t + εt.

yt is the variable we want to predict: the response
variable
Each xj,t is numerical and is called a predictor. They
are usually assumed to be known for all past and
future times.

εt is a white noise error term
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Estimation of the model

We find the values of β̂0, . . . , β̂k which minimize

N∑
i=1

e2i =
N∑
i=1

(yi − β0 − β1x1,i − · · · − βkxk,i)2.

This is called least squares estimation because it
gives the least value of the sum of squared errors
Finding the best estimates of the coefficients is
often called fitting the model to the data
We refer to the estimated coefficients using the
notation β̂0, . . . , β̂k.
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Useful predictors in linear regression

Linear trend
xt = t

t = 1, 2, . . . , T
Strong assumption that trend will continue.
use special function trend()

Seasonality

Seasinality will be considered based on the
interval of index
use special fucntion season()

18

Bahman  Rostami - Tabar

Bahman  Rostami - Tabar



Example: US consumption expenditure
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Example: US consumption expenditure
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Example: US consumption expenditure
fit_consMR <- us_change %>%
model(lm = TSLM(Consumption ~ Income + Production + Unemployment + Savings))

report(fit_consMR)

## Series: Consumption
## Model: TSLM
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8830 -0.1764 -0.0368 0.1525 1.2055
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.26729 0.03721 7.18 1.7e-11 ***
## Income 0.71448 0.04219 16.93 < 2e-16 ***
## Production 0.04589 0.02588 1.77 0.078 .
## Unemployment -0.20477 0.10550 -1.94 0.054 .
## Savings -0.04527 0.00278 -16.29 < 2e-16 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.329 on 182 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.749
## F-statistic: 139 on 4 and 182 DF, p-value: <2e-16 21
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Multiple regression and forecasting

For forecasting purposes, we require the following
assumptions:

εt are uncorrelated and zero mean
εt are uncorrelated with each xj,t.

It is useful to also have εt ∼ N(0, σ2) when producing
prediction intervals or doing statistical tests.
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Residual diagnostics

There are a series of plots that should be produced in
order to check different aspects of the fitted model
and the underlying assumptions.

1 check if residuls are uncorrelated using ACF
2 Check if residuals are normally distributed
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Residual scatterplots

Useful for spotting outliers and whether the linear
model was appropriate.

Scatterplot of residuals εt against each predictor
xj,t.
Scatterplot residuals against the fitted values ŷt
Expect to see scatterplots resembling a
horizontal band with no values too far from the
band and no patterns such as curvature or
increasing spread.
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Example: US consumption expenditure
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Residual patterns

If a plot of the residuals vs any predictor in the
model shows a pattern, then the relationship is
nonlinear.
If a plot of the residuals vs any predictor not in
the model shows a pattern, then the predictor
should be added to the model.
If a plot of the residuals vs fitted values shows a
pattern, then there is heteroscedasticity in the
errors. (Could try a transformation.)

27



Outline

1 Learning objectives

2 The linear model with time series

3 Evaluating the regression model

4 Selecting predictors

5 Forecasting with regression

6 Correlation, causation and forecasting

7 Lab Session 8

28



Comparing regression models

Computer output for regression will always give the
R2 value. This is a useful summary of the model.

It is equal to the square of the correlation
between y and ŷ.
It is often called the “coefficient of
determination”.
It can also be calculated as follows: R2 =

∑
(ŷt−ȳ)2∑
(yt−ȳ)2

It is the proportion of variance accounted for
(explained) by the predictors.

29
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Comparing regression models

However . . .

R2 does not allow for degrees of freedom.
Adding any variable tends to increase the value of R2,
even if that variable is irrelevant.

To overcome this problem, we can use adjusted R2:

R̄2 = 1 − (1 − R2)
T − 1

T − k − 1
where k = no. predictors and T = no. observations.

Maximizing R̄2 is equivalent to minimizing σ̂2.

σ̂2 =
1

T − k − 1

T∑
t=1
ε2t
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Cross-validation

1 Remove observation t from the data set, and fit
the model using the remaining data. Then
compute the error for the omitted observation

2 Repeat step 1 for t = 1, ..., T
3 Compute the MSE from errors obtained in 1. We

shall call this the CV
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Akaike’s Information Criterion

AIC = −2 log(L) + 2(k + 2)

where L is the likelihood and k is the number of
predictors in the model.

This is a penalized likelihood approach.
Minimizing the AIC gives the best model for
prediction.
AIC penalizes terms more heavily than R̄2.
Minimizing the AIC is asymptotically equivalent
to minimizing MSE via leave-one-out
cross-validation. 32
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Corrected AIC

For small values of T, the AIC tends to select too
many predictors, and so a bias-corrected version of
the AIC has been developed.

AICC = AIC +
2(k + 2)(k + 3)
T − k − 3

As with the AIC, the AICC should be minimized.
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Comparing regression models

glance(fit_consMR) %>%
select(r_squared, adj_r_squared, AIC, AICc, CV)

## # A tibble: 1 x 5
## r_squared adj_r_squared AIC AICc CV
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.754 0.749 -409. -409. 0.116

34
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Choosing regression variables

Best subsets regression

Fit all possible regression models using one or
more of the predictors.
Choose the best model based on one of the
measures of predictive ability (CV, AIC, AICc).
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Choosing regression variables

Backwards stepwise regression

Start with a model containing all variables.
Try subtracting one variable at a time. Keep the
model if it has lower CV or AICc.
Iterate until no further improvement.
You can also do forward stepwise

36
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Ex-ante versus ex-post forecasts

Ex ante forecasts are made using only
information available in advance.

I require forecasts of predictors

Ex post forecasts are made using later
information on the predictors.

I useful for studying behaviour of forecasting models.

trend, seasonal and calendar variables are all
known in advance, so these don’t need to be
forecast.

38
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Scenario based forecasting

Assumes possible scenarios for the predictor
variables
Prediction intervals for scenario based forecasts
do not include the uncertainty associated with
the future values of the predictor variables.
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US Consumption

fit_consBest <- us_change %>%
model(
TSLM(Consumption ~ Income + Savings + Unemployment)

)

down_future <- new_data(us_change, 4) %>%
mutate(Income = -1, Savings = -0.5, Unemployment = 0)

fc_down <- forecast(fit_consBest, new_data = down_future)

up_future <- new_data(us_change, 4) %>%
mutate(Income = 1, Savings = 0.5, Unemployment = 0)

fc_up <- forecast(fit_consBest, new_data = up_future)

40

Bahman  Rostami - Tabar

Bahman  Rostami - Tabar

Bahman  Rostami - Tabar

Bahman  Rostami - Tabar



US Consumption

us_change %>% autoplot(Consumption) +
ylab("% change in US consumption") +
autolayer(fc_up, series = "increase") +
autolayer(fc_down, series = "decrease") +
guides(colour = guide_legend(title = "Scenario"))
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Correlation does not imply causation
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Correlation is not causation

When x is useful for predicting y, it is not
necessarily causing y.
e.g., predict number of drownings y using
number of ice-creams sold x.
Correlations are useful for forecasting, even
when there is no causality.
Better models usually involve causal
relationships (e.g., temperature x and people z
to predict drownings y).
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Multicollinearity

In regression analysis, multicollinearity occurs when:

Two predictors are highly correlated (i.e., the
correlation between them is close to ±1).
A linear combination of some of the predictors is
highly correlated with another predictor.
A linear combination of one subset of predictors
is highly correlated with a linear combination of
another subset of predictors.
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Modern regression models

Suppose instead of 3 regressor we had 44.
I For example, 44 predictors leads to 18 trillion

possible models!

Stepwise regression cannot solve this problem
due to the number of variables.
We need to use the family of Lasso models:
lasso, ridge, elastic net

I watch out for a series of blogs on this in coming
weeks
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Lab Session 8

Given the daily A&E data, we want to develop a regression model
that takes into account temperature, and daily sesonality:

1 Import the temeperature data temp from the project directory
2 Join them to daily data set you have created before
3 Check the linear relationshiop between daily attendance and

temperature
4 Split the data into train and test
5 Train data using two regression models 5.1. using temperature

and seasonality 5.2. using only seasonality
6 Produce forecast
7 Calculate point forecast accuracy
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