
Forecasting in R
ARIMA models

Bahman Rostami-Tabar



Outline

1 Learning objectives

2 Introduction to ARIMA models

3 Non-seasonal ARIMA models

4 Estimation and order selection

5 ARIMA modelling in R

6 Forecasting

7 Seasonal ARIMA models

8 Lab Session 8 2



Outline

1 Learning objectives

2 Introduction to ARIMA models

3 Non-seasonal ARIMA models

4 Estimation and order selection

5 ARIMA modelling in R

6 Forecasting

7 Seasonal ARIMA models

8 Lab Session 8 3



Learning objectives

Describe model building strategy for ARIMA
models
Explain criteria for best model selection
Produce forecast using ARIMA models
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Exponential smoothing vs ARIMA models

Exponential smoothing models were based on a
description of trend and seasonality in the data,
ARIMA models aim to describe the
autocorrelations in the data.
Exponential smoothing and ARIMA models are
the two most widely-used approaches to time
series forecasting
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ARIMA models

Autoregressive Integrated Moving Average models

AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)
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What does ARIMA account for?

Previous observations
Rate of change in the previous observations
Error term in the previous observations
Perform weel for short term horizons
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ARIMA model

Combine ARMA model with differencing.
(1− B)dyt follows an ARMA model.

Autoregressive Moving Average(ARMA) models:

yt = c + φ1yt−1 + · · · + φpyt−p
+ θ1εt−1 + · · · + θqεt−q + εt.

ARIMA(p, d, q) model
AR: p = number of preceding/lagged y values
I: d = number of times series have to be “differenced”

MA: q = number of preceding/lagged values for the error term .
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Stationarity

ARIMA models are stationary

Definition
If {yt} is a stationary time series, then for all s, the
distribution of (yt, . . . , yt+s) does not depend on t.

A stationary series is:

roughly horizontal
constant variance
no patterns predictable in the long-term
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Stationarity vs. Non-Stationarity
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Stationarity

Definition
If {yt} is a stationary time series, then for all s, the
distribution of (yt, . . . , yt+s) does not depend on t.

Transformations help to stabilize the variance.

For ARIMA modelling, we also need to stabilize the
mean.
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Is your data stationarity?

Identifying non-stationary series

Time plot.
The ACF of stationary data drops to zero
relatively quickly
The ACF of non-stationary data decreases slowly.
For non-stationary data, the value of r1 is often
large and positive.
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Example: Google stock price
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Unit root tests

One way to determine more objectively whether
data is non stationary to use a unit root test
These are statistical hypothesis tests of
stationarity that are designed for determining
whether differencing is required

Statistical tests to determine the required order of
differencing.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test:
null hypothesis is that the data are stationary
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KPSS test

google_2018 %>%
features(Close, unitroot_kpss)

## # A tibble: 1 x 3

## Symbol kpss_stat kpss_pvalue

## <chr> <dbl> <dbl>

## 1 GOOG 0.573 0.0252
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Differencing

Differencing helps to stabilize the mean.
The differenced series is the change between each
observation in the original series.
Occasionally the differenced data will not appear
stationary and it may be necessary to difference the
data a second time.
In practice, it is almost never necessary to go beyond
second-order differences.
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Number of differencing

google_2018 %>%
features(Close, unitroot_ndiffs)

## # A tibble: 1 x 2

## Symbol ndiffs

## <chr> <int>

## 1 GOOG 1

#seasonal differencing
#features(Close, unitroot_nsdiffs)
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Autoregressive models

Autoregressive (AR) models:

yt = c + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt,
where εt is white noise. We use lagged values of yt as
predictors.
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Autoregressive models

In an autoregression model, we forecast the
variable of interest using a linear combination of
past values of the variable.
Where c is a constant and et i.i.d. (white noise)
random variable with zero mean and known
variance, σ2.
Changing the parameters φ1, φ2, . . . , φp results
in different time series patterns.
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Moving Average (MA) models

Moving Average (MA) models:

yt = c + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q,
where εt is white noise.
We use past errors as predictors. Don’t confuse this
with moving average smoothing!
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Moving Average (MA) models

We forecast the variable of interest using a linear
combination of past errors
c is a constant and et i.i.d. (white noise) random
variable with zero mean and known variance, σ2.
Changing the parameters θ1, θ2, . . . , θq results in
different time series patterns.
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ARMA(p,q) models

Autoregressive Moving Average(ARMA) models:

yt = c + φ1yt−1 + · · · + φpyt−p
+ θ1εt−1 + · · · + θqεt−q + εt.

Predictors include both lagged values of yt and
lagged errors.
Conditions on coefficients ensure stationarity.
Conditions on coefficients ensure invertibility.
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Select order of p,d,q

Once you have a stationary time series, the next
step is to select the appropriate ARIMA model. -
Number of differencing determine d
This means finding the most appropriate values
for p and q in the $ ARIMA(p, d, q) model.
To do so, you need to examine the
Autocorrelation and Partial Autocorrelation of
the stationary time series.
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Partial autocorrelations

Partial autocorrelationsmeasure relationship
between yt and yt−k, when the effects of other time lags —
1, 2, 3, . . . , k− 1 — are removed.

αk = kth partial autocorrelation coefficient
= equal to the estimate of φk in regression:

yt = c + φ1yt−1 + φ2yt−2 + · · · + φkyt−k.

Varying number of terms on RHS gives αk for
different values of k.
There are more efficient ways of calculating αk.
α1 = ρ1
same critical values of±1.96/

√
T as for ACF.
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ACF and PACF interpretation

AR(1)
ρk = φk1 for k = 1, 2, . . . ;
α1 = φ1 αk = 0 for k = 2, 3, . . . .

So we have an AR(1) model when

autocorrelations exponentially decay
there is a single significant partial
autocorrelation.
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ACF and PACF interpretation

MA(1)
ρ1 = θ1 ρk = 0 for k = 2, 3, . . . ;
αk = −(−θ1)k

So we have an MA(1) model when

the PACF is exponentially decaying and
there is a single significant spike in ACF
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Example: Mink trapping
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Example: Mink trapping
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Maximum likelihood estimation

Having identified the model order, we need to
estimate the parameters c, φ1, . . . , φp, θ1, . . . , θq.

MLE is very similar to least squares estimation
obtained by minimizing

T∑
t−1

e2t
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Information criteria

Akaike’s Information Criterion (AIC):
AIC = −2 log(L) + 2(p + q + k + 1),

where L is the likelihood of the data,
k = 1 if c 6= 0 and k = 0 if c = 0.

Corrected AIC:
AICc = AIC + 2(p+q+k+1)(p+q+k+2)

T−p−q−k−2 .

Bayesian Information Criterion:
BIC = AIC + [log(T)− 2](p + q + k− 1).

Good models are obtained by minimizing either the
AIC, AICc or BIC. Our preference is to use the AICc.
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How does ARIMA() work?

AICc = −2 log(L) + 2(p + q + k + 1)
[
1 + (p+q+k+2)

T−p−q−k−2

]
.

where L is the maximised likelihood fitted to the differenced data,
k = 1 if c 6= 0 and k = 0 otherwise.

Step1: Select current model (with smallest AICc) from:
ARIMA(2, d, 2)
ARIMA(0, d, 0)
ARIMA(1, d, 0)
ARIMA(0, d, 1)

Step 2: Consider variations of current model:
vary one of p, q, from current model by±1;
p, q both vary from current model by±1;
Include/exclude c from current model.

Model with lowest AICc becomes current model.
Repeat Step 2 until no lower AICc can be found.
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Modelling procedure with ARIMA

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox

transformation) to stabilize the variance.
3 If the data are non-stationary: take first differences of the

data until the data are stationary.
4 Examine the ACF/PACF: Is an AR(p) or MA(q) model

appropriate?
5 Try your chosen model(s), and use the AICc to search for a

better model.
6 Check the residuals from your chosen model by plotting

the ACF of the residuals, and doing a portmanteau test of
the residuals. If they do not look like white noise, try a
modified model.

7 Once the residuals look like white noise, calculate
forecasts.
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Automatic modelling procedure with ARIMA

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox

transformation) to stabilize the variance.
3 Use ARIMA to automatically select a model.
4 Check the residuals from your chosen model by plotting

the ACF of the residuals, and doing a portmanteau test of
the residuals. If they do not look like white noise, try a
modified model.

5 Once the residuals look like white noise, calculate
forecasts.
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Point forecasts

1 Rearrange ARIMA equation so yt is on LHS.
2 Rewrite equation by replacing t by T + h.
3 On RHS, replace future observations by their

forecasts, future errors by zero, and past errors
by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, . . ..
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Prediction intervals

95% prediction interval

ŷT+h|T ± 1.96
√
vT+h|T

where vT+h|T is estimated forecast variance.

Multi-step prediction intervals for ARIMA(0,0,q):

yt = εt +
q∑
i=1
θiεt−i.

vT|T+h = σ̂2
1 + h−1∑

i=1
θ2i

 , for h = 2, 3, . . . .
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Seasonal ARIMA models

ARIMA (p, d, q)︸ ︷︷ ︸ (P,D,Q)m︸ ︷︷ ︸
↑ ↑

Non-seasonal part Seasonal part of
of the model of the model

wherem = number of observations per year.
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Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen
in the seasonal lags of the PACF and ACF.

ARIMA(0,0,0)(0,0,1)12 will show:

a spike at lag 12 in the ACF but no other
significant spikes.
The PACF will show exponential decay in the
seasonal lags; that is, at lags 12, 24, 36, . . . .

ARIMA(0,0,0)(1,0,0)12 will show:

exponential decay in the seasonal lags of the ACF
a single significant spike at lag 12 in the PACF. 45



European quarterly retail trade

eu_retail %>% autoplot(value) +
xlab("Year") + ylab("Retail index")
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European quarterly retail trade

eu_retail %>% gg_tsdisplay(
value %>% difference(4))
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European quarterly retail trade

eu_retail %>% gg_tsdisplay(
value %>% difference(4) %>% difference(1))
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European quarterly retail trade

d = 1 and D = 1 seems necessary.
Significant spike at lag 1 in ACF suggests
non-seasonal MA(1) component.
Significant spike at lag 4 in ACF suggests seasonal
MA(1) component.
Initial candidate model: ARIMA(0,1,1)(0,1,1)4.
We could also have started with
ARIMA(1,1,0)(1,1,0)4.
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European quarterly retail trade

fit <- eu_retail %>%
model(arima = ARIMA(value ~ pdq(0,1,1) + PDQ(0,1,1)))

fit %>% gg_tsresiduals()
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European quarterly retail trade

augment(fit) %>%
features(.resid, ljung_box, lag = 8, dof = 2)

## # A tibble: 1 x 3
## .model lb_stat lb_pvalue
## <chr> <dbl> <dbl>
## 1 arima 10.7 0.0997
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Lab Session 8

For the daily A&E data :

Fit a suitable ARIMA model.
Produce forecasts of your fitted models for 42
days.
Check residuals
Check the forecasts. Do they look reasonable?
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