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Introduction to ETS

* Different types of time series:

Seasonality

Trend
None Additive Multiplicative
None — ARV A SV A v W
Let us understand the principles
. of extrapolative forecasting with
Additive : : .
series with a single component
Damped W
Multiplicative
Damped '\,.NW




Naive forecast

What is the simplest forecast you can think of for a time series?
For example: what will the temperature be like in your room after 5 minutes?

Viv1 = Vi
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* The forecastis a straight line = always equal to the last observation.

* |Isthis a good forecast?



Arithmetic mean

Another approach would be to calculate the average and use this as a
forecast.

For example: calculate the average temperature in your room over all the

years you live there... <
Ver1 = ?Z Vi
=1
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 The average has long memory and the random movements of the
noise will be cancelled out.

* |sthis a good forecast?



Simple Moving Average

Simple Moving Average allows us to select the appropriate memory
(length of the average).

e.g. only consider the temperature over the last week

SR

a~|r—\

The simple moving average:

 Has asingle parameter k. This controls the length of the moving average
and it is also known as its order.

e |tsvariable length allows us to control how reactive we are to new
information and how robust we are against noise.

* Gives equal importance to all k observations.



Simple Moving Average
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Simple Moving Average
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Which of the
different length
moving averages
is the most
appropriate for
this SKU?

We do not need
excessive moving
average lengths.
These will be far
too insensitive to
new information.



Weighted Moving Average

Should the weights be the same for all k observations?

We can overcome this limitation by allowing different weights for each
observation in the average:

t K
Veip1 = z w;iVi, w.r. t. Z w; =1
i=1

i=t—k+1

With the weighted moving average:

 We can control the length of the average and the importance of each
observation

* All weights mustadd up to 100% or 1. Normally the older the
observation the smaller the weight.

* Has k+1 parameters, the length of the average and k weights.

 The number of weights makes it very challenging to use in practice.
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The Exponential Smoothing Concept

Starting from the weighted moving average we can constructa heuristic to
select the weights easily and consequently its order (k).

Data Yi Yia Y2 Yis
Weights W: Wt1 Witz Whts

1. Make the more recent information more relevant, bigger weights
2. Remember! Weights must add up to 100% (or 1)

- Take 50% for the first and then always take 50% of the remaining
weight. (Sum of all weights = 100%)

Weights W Wi-1 W2 Witz Wita Wis W6

Weights 50% 25% 12.5% 6.25% 3.12% 1.56% =0%

- The length of the average is set automatically!



The Exponential Smoothing Concept

Weights Wt Wt-1 W:t-2 Wi3  Wta W5 W6
50% 25% 12.5% 6.25% 3.12% 1.56% = 0%

Only one parameter, the initial weight! Let this weight be Alpha (a)...

a(1-a)° a(l-a)! o(l-a)?> o(l-a)® a(l-a)* o(l-o)° afl-a)®

Weights

50% Exponentially distributed
40% \ weights
30%
20% - —
t t-2 -3 4 5 -6

The exponential weighting scheme allows us to select reasonable weights
and the length of the weighted moving average with a single parameter,
the a.

10%

t1



The Exponential Smoothing Concept

Vir1=ays +a(l—a)y;_1 + a(l — (;z)zyt_2 + a(l - “)3)’1:—3 4.

Verr = aye + (1 — 0»’)(\“)’1&—1 +a(l-—a)y; o +a(l—a)*y,_3+ "‘})
|

What is this?

Ve = aye—q1 + a(l — a)yt_z + a(1l — a)zyt_g + ...
A simpler form of the model:

Vee1 = aye + (1 — )P,



Simple Exponential Smoothing

Ver1 = ay: + (1 — a)y;

The parameter a, is called smoothing parameter and is bounded between
0 and 1.

The exponential smoothing formula can be read as: the forecast is a times
the most recent observation and (1-a) times all the previous information.

 Alow aimplies that the forecast is mostly based on the previous
information

* A high aimplies that the forecastis mostly based on the last
information

Therefore the smoothing parameter a controls how reactive is the
forecast to new information.

This form was proposed by Brown (1956).

Much has changed since then...



Simple Exponential Smoothing
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Simple Exponential Smoothing
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In the presence of high noise or
outliers we need to use low values
of alpha to make our forecasts
more robust.

Here the outlier affects strongly
our forecast.

Here the effect of outlier is even
stronger.



Simple Exponential Smoothing
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Very low alpha parameter makes
our forecast too slow to adjust to
the new level of sales.

Here the alpha achieves a good
compromise between reactivity
and robustness to noise.

Very high alpha parameter makes
our forecast to react very fast, but
now it does not filter out noise

adequately.



Simple Exponential Smoothing

We can formulate exponential smoothingin a different way:
Ver1=ays + (1 — @),
Ver1 = aYe + Ve — Yy
Ver1 =V +a(ye — Je)

The difference between the Actuals and the Forecastis the forecast error.

Yer1 = Ve T aeg

This is known as the error correction form of exponential smoothing.
Why is this useful?
Let’s find out after a short quiz...



Forecasting Level Series, Quiz

Please, follow the link: http://etc.ch/V7Ss

1. Which of the methods is more appropriate for the
following data?

1020

1010

1000

990

980



http://etc.ch/V7Ss

Forecasting Level Series, Quiz

Please, follow the link: http://etc.ch/V7Ss

2. Which of the methods is more appropriate for the
following data (2" example)?

1050

1000

950

900



http://etc.ch/V7Ss
http://etc.ch/V7Ss

Forecasting Level Series, Quiz

Please, follow the link: http://etc.ch/V7Ss

3. Which of the smoothing parameters is more
appropriate for this data if we use SES?

Data
1000 1050

950

900
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Introduction to ETS

SES models the level of a time series
So, we canwritey, .. =1,
By shifting the indices by 1 period we can now write:
Ve =11t e (1)
[, =1,_, + ae, (2)
This will lead us to the so called State Space Models:

* Eg. (1) — the measurement equation: says that the observed
actuals are the result of some structure (l;) and noise (e;).

* Eg. (2) — the transition equation: says that there is an
unobserved process describing how the level of the time
series evolves. For our case this is all the structure of the

series.
* We can have other components as well...



Introduction to ETS

* Different types of components:

Seasonality

Trend
None “N” Additive “N” Multiplicative “M”
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Introduction to ETS

* And two types of errors:

Additive error Multiplicative error
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Introduction to ETS

* ETS taxonomy includes:
e 2types of errors,
* 5 types of trends,

e 3 types of seasonality.

* Which gives us 30 models:
* 6 pure additive models,
* 6 pure multiplicative models,

e 18 mixed models.



Introduction to ETS

* Based on the time series decomposition we can
have the pure additive model:
Vi =lim1 +beq +Seem + &

* And for the pure multiplicative one:
Ve = li1De—1Se—m&t
* Andthere are combinations between the two.

* For example, an ETS(M,A,M) model:
Ve = (le—q + be—1)Se_mét



Introduction to ETS

* All pure models make sense:

e Additive assume that the variables can be positive,
negative or zero;

* Multiplicative ones assume that the response variable
can only be positive.

* Not all mixed models are reasonable
* For example, ETS(A,M,A) model:
Vi = lt—1beq1 + Stem + &
* Why?

* You can fit them and produce forecasts, but they
break easily.



Introduction to ETS

* The list of reasonable ETS models:

* Additive error (& = €;):

T

“ Ve = li—1 + € Ve = li—q + Stem + €
n Ve =lt—1+beq + € Ve =lt—q + b—q + St + €
m Ve =li—1 + Pb_q + € Ve =lt—1 + b1 + St + €

* Itis usually assumed that €, ~ N(0,5%)

Trend



Introduction to ETS

* The list of reasonable ETS models:

* Multiplicative error (& = 1 + €):

T

“ Ve =l 1(1+€) Ve =1 +5e-m)(1 + €0) Ve = le-1Se-m(1 + €)

n Ve = (lg—q +be—q) (1 + €p) Ve = (lemq + beq +Se—m) (1 + €) Ve = (l—1 + b)) Se—m (1 + €,)

m Ve = (le—q + Pbe_1) (1 +€;) Ve = o + g+ See) (Lt €) ¥ = (lemq + Db 1) Se—m(1 + €p)

m Ve = le—1be_1(1+€p) - Ve = le—1be1S-m(1+ €)
=1,_b% (1+¢) - =1,_b? s, (1+¢)
Yt t—19¢_1 t Yt t—19¢_1St-m t

* Usual assumyption is €, ~ N(0, a?), but in smooth it is
1+€¢ ~1o N(0,0%)

Trend



Introduction to ETS

So far, we've discussed only one part of ETS model.

It is called “measurement equation” and it shows
how the data is formed.

* For example, with local level model: y; = [,_; + €;

But level, trend and seasonal components might
change over time.

So, there should be a mechanism for update of
states.



Introduction to ETS

* Transition equation — the equation that shows how
the components change over time.

* For example, for ETS(A,N,N):
Ly =11 + ae;
* Any ETS model consists of these two parts.

* So, ETS(A,N,N) can be represented as:

Ve = li_q + €

lt — lt—l + (IEt



Introduction to ETS

Changinglevel, [, Actual sales, y;
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Introduction to ETS

Changing level, [, Actual sales, y; One-step-ahead prediction,
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Introduction to ETS

* |n general pure additive model can be summarised
dsS.
Ve =WV + €
v, = Fv,_{ + ge¢;
* g is the persistence vector... The rest is not important.

 See Hyndman et al. (2008) for details.

 Additional resources:
* For pure additive models: http://tiny.cc/znxc9y

* For pure multiplicative models: http://tiny.cc/2oxc9y

 For the mixed ones: http://tiny.cc/emxc9y



http://tiny.cc/znxc9y
http://tiny.cc/znxc9y
http://tiny.cc/znxc9y
http://tiny.cc/2oxc9y
http://tiny.cc/2oxc9y
http://tiny.cc/emxc9y
http://tiny.cc/emxc9y

Introduction to ETS

Why do we bother with ETS model and not just
stick with methods?

Models allow us:

* producing point forecasts,

* producing prediction intervals,

* selecting the components (error / trend /seasonal),
* adding explanatory variables (weather, promotions),

+ they can be estimated in a way, guaranteeing that
the forecasts will be more stable.



Introduction to ETS, Quiz

Let’s see if you can identify components in time series,
please follow the link: http://etc.ch/V7Ss

1. What time series components are present here?

b T
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http://etc.ch/V7Ss

Introduction to ETS, Quiz

Please, follow the link: http://etc.ch/V7Ss

2. What types of components are present in the same
series?

Sales

4000 6000 8000 10000 12000 14000

il MMMM

1984 1986 1988 1990 1992
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Local level model

 |Local level model underlies SES.

* It can be:
e either additive — ETS(A,N,N):
Vi = li—1 + €
lt — lt—l + C(Et
e or multiplicative — ETS(M,N,N):
Ve = li—1(1+ €;)



Local level model

 |n the additive case:

Ve =li—1+ €
lt — lt—l + CZEt
Et ~ N(O, 0-2)

* The l; represents the anticipated average demand in period t
(e.g. average demand on beer in a pub in Cardiff);

* The ¢; represents the unexpected demand (e.g. Ivan visits
Cardiff);

(o isthe size of the uncertainty about the demand;
 «aisthe rate of change of the level of demand;

* e is the persistent effect on the level (e.g. Ivan goes out with
his friends);



Local level model

* Anexample.o = 30
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Local level model

* Anexamplewitha = 0.2ando = 30

ETS(ANN)
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Local level model

e Two cases of interest:

a=20 a=1

ETS(ANN) ETS(ANN)
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Local level model

* The forecast is the straight line:
Vien = Lt
 And we can construct prediction intervals based on
e, ~ N(0,0%)

ETS(ANN)




Aa ,m\ L2 mHa\ L2
f
O
V) - e Lo
()
>
a - o - o
V oo,— I om,o— oo_o— omm oo,— I om_o— oo_o— omm
)
C Jo1oweled Sulyjoows |ewndo
Q
[
. e_ - ® -9
[ ]
O
c : :
lt
A > :
m X
m Q.
" O - f
> B
T
S— n T T T T " e T T T T T " e
A 00L1 0501 ool 056 0511 ookl 0501 0001 056
(q0)
O
O °
—




Local level model

* Summarising:
1. «a regulates the rate of change of the local level;

2. The higher it is, the higher the responsiveness of the
model;

3. The higher & means higher uncertainty, because of (2);
4. It also regulates the width of prediction interval;

5. We can optimise «.



Local level model

* ETS(M,N,N) has properties similar to ETS(A,N,N):
Ve =li1(1+ €)

lp =116l + ac,)
1+¢€ ~lo N(0,0%)

* The forecast is the straight line again.

* But the prediction interval increases with the
increase of level.



Local level model

* How many parameters do we need to estimate in
ETS(A,N,N)?

e Three:

e [y, @and 6“.



Local level model, Quiz

Please follow the link: http://etc.ch/\/7Ss

1. Why does the prediction interval widen with the increase
of forecast horizon for ETS(A,N,N) in this case?
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Local trend model

* Arethere any other components in time series?
 Why not add a trend component, ETS(A,A,N) :

ETS(A,A,N) ETS(A,N,N)
yt — lt—l + bt_]_ + Et Yt — lt—l + Et
le = l—1 + by + e, lp =l + a€

bt — bt—l + ﬁEt Et ~ N(O; 0-2)
Er ~ N(O; 0-2)

 The mechanism s similar to ETS(A,N,N).
* This model underlies “Holt’s method”.
* But now we also update the trend.



Local trend model

* Decomposition of time series due to ETS(A,A,N):
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Local trend model

e ETS(A,A,N):
Ve =li—1+beq T €
ly =11+ b1 + ae;
by = by_1 + b€t
* « has the same property as in ETS(A,N,N).

* [3 defines the rate of change of the trend:
B =0, b; = bs_q, the trend is constant;
* B =1,b; = b4+ €, the trend is changing rapidly.

e The forecastis a line:
371:+h — lt T hbt

 The width of intervals changes with the change of both
smoothing parameters.



Local trend model

* Ifbotha =0 and f = 0, then we have a deterministic
trend:

Ve =l—q + beq + €
le = lg—q + by
by = b—1 = by

ETS(AAN)
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1980 1982 1984 1986 1988 1990



Local trend model

 Theinfluence of parameters on forecasts:

a=0,=0
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Local trend model

* How many parameters do we need to estimate in
ETS(A,A,N)?

* Five:
+ [y, by, & B and 62.

 ETS(M,A,N)is similar, but assumes a different error
term.

 What does it imply?



Other trend model

* There are other types of trend models:

 ETS(A,Ad,N) — damped trend model (the trend is not
linear, it is slowed down);

 ETS(M,M,N) — multiplicative trend model (exponential
growth / decline);

e butwe don’t have time to discuss all of them.

 The components update is similar to the one for
ETS(A,A,N).



ETS taxonomy

* Different types of components:

Seasonality

Trend
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Trend seasonal model

* Now we can formulate a more complicated model.

¢ We start with ETS(A,A,A): ETS(A,A,N)
Ye=li1tbeatStmte gy =1, +b_, +e,
lp =11 +Deq + e, [y =11+ b+ ae
by = by_1 + pe; by = bs_1 + Pé€;
St = St—m T Y€
e, ~ N(0,0%) e, ~ N(0,0%)

* Almost the same as ETS(A,A,N).

* ¥ now regulates the rate of change for the seasonal
component.

 The forecast is produced as:
Vesn = Lt + hby + 8 _min



Trend seasonal model

e The model underlies “Holt-Winters method”.

* How many parameters do we have in the trend
seasonal model?

* 6+ m:

* [y, by,
° é{\/ ﬁ; )//\;
* m seasonal indices sq, S5, ..., Sy,

e and 2.



Trend seasonal model

* An example with ETS(A,A,A):
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Trend seasonal model

 Aseries can be decomposed based on ETS(A,A,A):

Ve =lg—q +beq +Seem + €
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Trend seasonal model

* There are other types of trend-seasonal models

 The update mechanisms are similar.



Trend seasonal model, Quiz

* Anexample, let’s go to the quiz:

1. Which of these two models makes more sense?

ETS(AAA) ETS(MNN)
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950 1000 1050 1100 1150 1200
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Trend seasonal model

e An exercise:

* https://kourentzes.com/fo
recasting/2014/10/30/exp
onential-smoothing-demo/

Exponential smoothing demonstration
Time Series Additive Effect Horizon Prediction Interval

P trend components

Exponential smoothing setup

Error Trend Season

- ) — ——
(=3 -
Select Model

«| Traditional paramesters 0 < alpha, beta, gamma, phi < 1

Alpha
017
-—6—-
Exponential smoothing forecast and components
Forecast - RMSE: 5.81

=
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L e
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Exponential smoothing demo using the forecast package for R. nikolsos Kourentzss , 2014


https://kourentzes.com/forecasting/2014/10/30/exponential-smoothing-demo/
https://kourentzes.com/forecasting/2014/10/30/exponential-smoothing-demo/
https://kourentzes.com/forecasting/2014/10/30/exponential-smoothing-demo/
https://kourentzes.com/forecasting/2014/10/30/exponential-smoothing-demo/
https://kourentzes.com/forecasting/2014/10/30/exponential-smoothing-demo/
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Estimation of ETS

 Remember the pure additive ETS model?
Ve =W V1 + €
vt — th—l ~+ gEt

* How can we estimate it?
* We use the assumption that e, ~ N(0, 6%)

* Based on this assumption we can derive a likelihood
function, using pdf of normal distribution:
_(e=90)?

1
(y:10) = e 20°
J e V2102

* Andthen maximise it by changing parameters




Estimation of ETS

Why is maximum likelihood estimation (IMLE)
useful?

Likelihood has good statistical properties:

 MLE of parameters are consistent and efficient.

Likelihood can be used in calculation of information
criteria. Thus, model selection is possible.

What about multiplicative models?

* The approach is similar, but the likelihood function is
different.



Information criteria

Can we measure distance between the true model and
our model?

* Yes, if we know the truth:
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Information criteria

What makes the model closer to the true one?

ne ETS components,

T
* The transformation of the variable,
T

ne estimates of parameters.
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Model selection in ETS

* We can compage models using AlG
Al =2k —2f(mod )

* where fis the log-likelihood value and k is the number
of all the estimated parameters

e There are other ICs:

Assumes hormal
distribution,

Used by default
in R functions.




Model selection in ETS

So, in the ETS framework, we can:

1. fit all the possible models,

. calculate their likelihoods,

2

3. calculate the number of parameters (including 64),
4. calculate IC values of the models in the pool,
5

. select the model that has the lowest IC.

* Thisis what all the ETS functionsin R do by default.
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* Packages and functionsin R:

* forecast package:
* ets()—basic ETS with 19 models;

* bats(), tbats() — models for multiple frequencies.

* fable package:

* ETS()— similar to ets() from forecast.

* 19 models, only additive trend;

* smooth package:

* es()— more flexible ETS:
* 30 models,
* different loss functions,

e allows including explanatory variables.



Thank you!

Thank you for your attention!
Questions?

lvan Svetunkov
i.svetunkov@lancaster.ac.uk

o @iSvetunkov

https://forecasting.svetunkov.ru

Full or partial reproduction of the slides is not permitted without author’s consent. Please contacti.svetunkov@lancaster.ac.uk
for more information.
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