

Cardiff Business School

Ysgol Busnes Caerdydd

Forecasting in R Time series patterns

Bahman Rostami-Tabar

Outline

- 2 Time series Patterns
- 3 Time plots and lab 2
- - 4 Seasonal plots and lab 3
- Autocorrelation and lab 4 5

Outline

You should be able to:

- 1 Create time series graphics
- Identify key feature in time series data

Outline

- 2 Time series Patterns
- 3 Time plots and lab 2
- 4 Seasonal plots and lab 3
- Autocorrelation and lab 4 5

Key features of time series

- Underlying trend
- Seasonal/cycle pattern
- Autocorrelation
- Unpredictable patterns/Noise

Trend pattern exists when there is a long-term increase or decrease in the data. **Seasonal** pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week). **Cyclic** pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Outline

- 3 Time plots and lab 2
- 4 Seasonal plots and lab 3
- 5 Autocorrelation and lab 4

Time plots

ansett %>% filter(Airports=="MEL-SYD", Class=="Economy") %>% autoplot(Passengers)

Time plots

```
PBS %>% filter(ATC2 == "A10") %>%
summarise(Cost = sum(Cost)/1e6) %>% autoplot(Cost) +
ylab("$ million") + xlab("Year") +
ggtitle("Antidiabetic drug sales")
```


- use autoplot to crearte a time plot of daily attendnace
- Create plots of A&E total hourly attendances
- Create plots of A&E total monthly attendances

Are time plots best?

Are time plots best?

Are time plots best?

Outline

- 2 Time series Patterns
- 3 Time plots and lab 2
- 4
 - Seasonal plots and lab 3
- 5 Autocorrelation and lab 4

Seasonal plots

```
new_production <- aus_production %>%
filter(year(Quarter) >= 1992)
new_production %>% gg_season(Beer, labels = "both")+
ylab("$ million") +
ggtitle("Seasonal plot: antidiabetic drug sales")
```


Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Seasonal subseries plots

new_production %>% gg_subseries(Beer) + ylab("\$ million
ggtitle("Subseries plot: antidiabetic drug sales")

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Given the hourly A&E attendance you computed:

- Use gg_season() and gg_subseries() to explore the series
 - use above plots to check hourly, daily patterns
- What do you learn?

Time series patterns

as_tsibble(fma::elec) %>%
filter(index >= 1980) %>%
autoplot(value) + xlab("Year") + ylab("GWh") +
ggtitle("Australian electricity production")

Time series patterns

pelt %>%
autoplot(Lynx) +
ggtitle("Annual Canadian Lynx Trappings") +
xlab("Year") + ylab("Number trapped")

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 2 Time series Patterns
- 3 Time plots and lab 2
- 4 Seasonal plots and lab 3
- 5 Autocorrelation and lab 4

Example: Beer production

new_production <- aus_production %>%
filter(year(Quarter) >= 1992)
new_production

A tsibble: 74 x 7 [1Q]

##		Quarter	Beer	Tobacco	Bricks	Cement
##		<qtr></qtr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1992 Q1	443	5777	383	1289
##	2	1992 Q2	410	5853	404	1501
##	3	1992 Q3	420	6416	446	1539
##	4	1992 Q4	532	5825	420	1568
##	5	1993 Q1	433	5724	394	1450
##	6	1993 Q2	421	6036	462	1668

Example: Beer production

new_production %>% gg_lag(Beer, geom='point')

- Each graph shows *y*_t plotted against *y*_{t-k} for different values of *k*.
- The autocorrelations are the correlations associated with these scatterplots.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series *y*.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series *y*.

We measure the relationship between:

- y_t and y_{t-1}
- y_t and y_{t-2}
- y_t and y_{t-3}

etc.

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

and $r_k = c_k/c_0$

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

and $r_k = c_k/c_0$

- r₁ indicates how successive values of y relate to each other
- r₂ indicates how y values two periods apart relate to each other
- *r_k* is *almost* the same as the sample correlation between *y_t* and *y_{t-k}*.

Results for first 9 lags for beer data:

```
new_production %>% ACF(Beer, lag_max = 9)
```

##	#	A tsi	bble:	9	х	2	[1Q]
##		lag	ä	act	F		
##		<lag></lag>	<dl< td=""><td>51></td><td>></td><td></td><td></td></dl<>	5 1>	>		
##	1	1Q	-0.10	92			
##	2	2Q	-0.6	57			
##	3	ЗQ	-0.00	503	3		
##	4	4Q	0.80	59			
##	5	5Q	-0.08	892	2		
##	6	6Q	-0.63	35			
##	7	7Q	-0.0	542	2		
##	8	80	0.83	32			

Autocorrelation

Results for first 9 lags for beer data:

new_production %>% ACF(Beer, lag_max = 9) %>% autoplot()

Autocorrelation

- r₄ higher than for the other lags. This is due to the seasonal pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- r₂ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the *autocorrelation* or ACF.
- The plot is known as a correlogram

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

Aus monthly electricity production

elec2 <- as_tsibble(fma::elec) %>%
filter(year(index) >= 1980)
elec2 %>% autoplot(value)

Aus monthly electricity production

elec2 %>% ACF(value, lag_max=48) %>%
autoplot()

Time plot shows clear trend and seasonality.

The same features are reflected in the ACF.

- The slowly decaying ACF indicates trend.
- The ACF peaks at lags 12, 24, 36, ..., indicate seasonality of length 12.

Which is which?

Example: White noise

Example: White noise

acf			
)			
7			
B			
7			
2			
7			
ł			
5			
1			
3			

Example: White noise

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the **critical values**.

Explore the series using gg_lag and ACF functions. Plot only 14 lags.

- Can you spot any seasonality, or trend?
- What do you learn about the series?
- Does daily series look like white noise?